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Simple waves on shear flows: similarity solutions 
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School of Mathematics, University of Nowcastle-upon-Tyne 

(Received 26 April 1972) 

A class of similarity solutions is derived for the equations of simple waves on 
inviscid shear flows discovered by Blythe, Kazakia & Varley (1972). Such solu- 
tions all have propagation speeds proportional to the square root of the depth and 
contain the uniform flow solution as a special case. 

1. Introduction 
In the preceding paper, Blythe, Kazakia & Varley (1972, referred to as I) have 

shown how it is possible to introduce generalized Riemann relations to discuss 
the occurrence of simple waves on inviscid shear flows in shallow channels. It 
is somewhat surprising that this problem has not been considered earlier since 
the results obtained are very similar to those for simple waves on non-sheared 
flows familiar in many branches of fluid mechanics. The secret of the method is to  
substitute directly into the equations of motion an expression of the simple wave 
form and not attempt, as is common in most textbook treatments of the simple 
wave, to produce a general set of equations in terms of two Riemann invariants. 

In this note, the problem will be treated differently from I to show several 
facets of the theory which may prove instructive to the reader although the 
fundamental idea is, of course, the same. The main purposes of this presentation is 
to discuss certain similarity solutions of the governing equations associated with 
particular forms of shear. 

2. Equations of motion 

inviscid flow equations in the so-called ‘hydraulic approximation ’ : 
The basic equations of motion for the flow are the unsteady two-dimensional 

Ut + uuZ + Wuy + gh, = 0, 

uz + wy = 0, 
(2.1) 

(2.2) 

where h is the depth of water in the channel, x and y are Cartesian co-ordinates 
measured along and perpendicular to the uniform bottom and u and v the associ- 
ated velocity components. The hydraulic approximation replaces the pressure 
term in (2 .  I)  by the uniform gravitational pressure pgh, where p is the density and 
g the acceleration due to gravity. It may be obtained from the full equations by 
scaling the variables in such a way that lateral variations are small compared 
with vertical variations. It implies the shallow-water approximation h,/L < 1 ,  
where h, is a characteristic depth and L a typical wavelength. 
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The surface boundary conditions become 

ony = h. 
At the bottom, 

v = h,+uh,, (2.3) 

U t  + uuz + gh, = 0 

v = O  on y = O .  

Simple wave solutions in which the wave speed c depends only on the depth h 
are sought. Thus 

u = u(x-ct ,  y ) ,  (2.6) 

h = h(x-ct) ,  (2.7) 
where c = c(h) only. 

Differentiation (2.6) and (2.7), we obtain 

h,+ch, = 0, 

ut+cu, = 0. 
Equation (2.1) now becomes 

au au ah 
(u-c)-++-+g- = 0. 

ax ay ax 

Putting 6 = x - ct, this equation together with (2.2) may be written as 

au au dh 
(u-c)-+w-+g- = 0, 

a6 aY d 6  

au aw -+- = 0, 
a'5 aY 

where w = v(a&/ax)-l. 
Further, the boundary conditions are 

and 

(2.10) 

(2.11) 

(2.12) 

w = (U - C )  dh/d< (2.13) 

au dh 
( u - c ) - + g -  = 0 

a'5 d'5 
(2.14) 

on y = h, with w = 0 on y = 0. 
Since h = h(c), these equations may be written in terms of the independent 

variables y and h: 
au au 

(u-c)-+ww,-+g = 0, 
ah ay 

au awl 
ah ay 
-+- = 0, 

with boundary conditions 

where 

! 

(2.15) 

(2.16) 

w1 = u-c ,  (u-c)au/ah+g = o on y = h, (2.17) 

w l =  0 on y =  0, (2.18) 

(2.19) 
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Eliminating au/ah from (2.15) and (2.6), we may write 

On integrating, we have 
dY 

Evaluation at the upper limit requires, from (2.17), 

(2.20) 

(2.21) 

(2.22) 

This result may be compared with the result of Burns (1953) for linearized theory, 
where u is known explicitly as the undisturbed shear and hence equation (2.22) 
gives the speed c directly. 

Substituting (2.21) into (2.15) gives 

Eliminating the explicit appearance of u by writing 

(2.23) 

(2.24) 

then gives 

(2.25) 
a 2 1  a21 a 1  -+I- = 2- 

ayah ay2 ay 
wherec’ = dc/dh. 

function c(h) is known. The boundary conditions on I are 
Equation (2.25) is a quasi-linear hyperbolic equation for I provided that the 

I(h,  h) = I ,  I(h,  0 )  = 0 (2.26) 

A more convenient form for (2.25) is obtained by introducing the co-ordinate 
and I(h,, y) given by initial conditions posed at some h = h,. 

Y = y/has 

(2.27) 
a 2 1  a 2 1  +(I-I.)-=-+-[---(-)] a 1  2aI a i  cthfs 81 fs 

ay2 ay ay ay g t  ay 
h- 

ayah 

with I (h, I )  = I,  I(h,  0) = 0 and I(ho, P) given. 

3. Characteristic equations and linearized theory 
Equation (2.27) has characteristics 

or 

(dh )2 (1 -  Y) -hdYdh = 0 

d h  = 0, dI . /dh  = (I- Y)/h.  

Along lines h = constant, we can write 
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where a and b are the roots of h2- (c'h.l/g+) h + 1 = 0 and p = aI/ah, q = allay. 
dq = 2q [qg - U] - b] dh. On(I-  Y ) d h  = hdY ,  

(3.3) 

The boundary conditions I = 1 on Y = I, I = 0 on Y = 0 and I = I(y) on h = h, 
are all prescribed along characteristics. Obviously, there are too many boundary 
conditions for the usual characteristic-value problem but this is necessary to 
determine the unknown function c(h) in the differential equation. 

The characteristics of (3.3) are, in fact, the particle paths of the motion, as may 
be demonstrated by evaluating 

d y - - = - -  V w1 ah 
ax u--c u-cax' 
-- 

whence (3.4) 

A linearized theory which corresponds to that derived by Burns (1953) may 
be obtained by expanding in terms of a small parameter E as follows: 

with 
I = I,( Y )  + €Il( Y ,  (h - h,)/e) + . . . , 

h = h,+eh,+ ... 
( 3 . 5 )  

and 

Substituting in (2 .25 )  we obtain 

c = C 0 + E C 1 +  ... . 

I' d Y  

and 

whichIchecks with Burn's theory directly 

4. Similarity solutions 
Solutions to (2.27) which are independent of h may be sought. An alternative 

approach is to expand (2.27) in powers of h with coefficient functions only of I'. 
The first term depends only on Y and satisfies the equation 

where c'h:/g* must be a constant. 
Writing c'h.l/g: = a, we obtain c = 2a(gh)*. Thus all the solutions have propa- 

gation speed proportional to (gh):. The special case a = $ or c = 3(gh)' 2 corre- 
sponds to the no-shear solutions, which can be treated by classical methods. 

The solution of the (4.1) subject to the boundary conditions 

I(1) = 1, I (0)  = 0 

is tedious but not difficult. Writing J = I - Y we obtain 

JJ'dJ'IdJ = 3( 1 + J' )2-  2a( I + J')$ + (1  + J ' ) ,  
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where c'h&/g* = a. After a further substitution N 2  = J' + 1 this may be integrated 
to give 

(a - N)(a2-l)/a(a-b) ( N  - b)(62-1)/W-d 
J = C  NUab 7 (4.3) 

where a and b are the roots of h2 -ah + 4 = 0 and C is an arbitrary constant. 
It will be, observed that the boundary conditions on J are J(1) = 0, J ( 0 )  = 0. 
Thus (4.3) satisfies these conditions at N = a or N = b provided that a > 1. 

Since N 2 -  1 = d J / d Y ,  we deduce that 

- N)-li(Za2-1) ( N  - ga-1)(2a2)/(2a2-1) 

d N .  (9.4) s N3 
y=-c  

The variable N is directly related to the velocity y by the relation 

from which u = (2a - N-l) (gh)8. (4.6) 

U = I/a at Y = 0 (4.7) 

Writing U = u/(gh)S we see that 

and U =  2a at Y =  1. 

Thus (4.4) becomes after a little manipulation 

On introducing standard notation €or the p function we obtain 

1). (4.9) 
9a2- 1 2 ( d -  1 )  u-Cr-1 4a2- 1 2(@- 1) 

y = p -  ( 2a2- 1' - 2a2- 1 ' -114- 2 a - a 4  2a2-17 2 ~ 2 - 1  

In  fact, the function (4.9) is tabulated. 
The velocity ranges from u = (gh)*/u at y = 0 to u = Ba(gh,)* at y = h and the 

propagation speed c = (2a+a-l) (gh)&. We note that for a > 1, e > 2a > u,,,. 
Thus u + c anywhere in the range and there is no critical point. Since J(1) = 0 
implies I (  1) = 1 the velocity profile (4.8) satisfies the Burns condition given by 
equation (3.2). A theorem given by Burns (1953) states that, for the linearized 
theory, a velocity profile of the form (4.8) should give two propagation speeds el 
and c2 such that el > U(1)  > U ( 0 )  > c2. By inserting the profile (4.8) in the con- 
dition (2.2) it can be shown using elementary theory of the hypergeometric func- 
tion that 

(4.10) 

Thus the Burns condition gives c1 = 2a-ta-l and c2 = l / a  = U(0) .  The bottom 
is thus a critical point of the second propagation speed. It will be observed that 
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0 1 .0 2.0 3.0 

FIGURE 1. Velocity profile for c = 3.265 (gh)B. 

0 0.5 1 .0 

(u - UO)/(Ul - uo) 

FIGURE 3. Velocity profiles for c = 3.0 (gh)a, 3.265 (gh)t  and co. 

I (  Y )  still converges for c = c2 and Burns’ theorem must be modified to include 
this case. In the nonlinear theory J( P) with the profile (4.8) and c = c2 does not 
satisfy the differential equation (4.1). We can only assume that this profile with 
c = l / a  does not develop as a similarity solution. 

The special case a = 1, a = $ gives u = 2(gh)* on y = h and G = 3(gh)*, and 
this solution corresponds to no shear. 
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A typical profile for a2 = 1-5 and c = 3.265 (gh)& is shown in figure 1. It will 
be seen that (4.9) gives Y as a function of (u - u,,)/(u, - u,,), where u,, is velocity at 
P = 0 and u1 is velocity a t  Y = I. By plotting the result in terms of these vari- 
ables, the whole range of a from unity to infinity can be shown (figure 2). 

5. Conclusions 
The similarity solutions derived in $4 form a set of solutions which are 

non-critical in the sense of1  in that they do not possess a critical layer at which 
zc = c. The>- are a more general class of solutions than the simple waves O f  ChSSiCaI 
shallow-water theory without shear, which themselves belong to the class. 

The author is indebted to Professor P. A. Blythe, Professor P. H. Roberts, 
Dr P. Baldwiii and Dr R. S. Johnson for many helpful comments and suggestions. 
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